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We consider the linearized stability of interfacial progressive waves in a two-layer 
inviscid fluid, for the case when there is a basic current shear in either, or both, of 
the fluids. For this configuration the basic wave has been calculated by Pullin & 
Grimshaw (1983 b). Our results here are mainly restricted to two-space-dimensional 
instabilities (i.e. one-dimensional in the propagation space), and are obtained both 
analytically and numerically. The analytical results are for the long-wavelength 
modulational instability of small-amplitude waves. The numerical results are re- 
stricted to the case when the lower fluid is infinitely deep, and for the Boussinesq 
approximation. They are obtained by solving the linearized stability problem with 
truncated Fourier series, and solving the resulting eigenvalue problem for the growth 
rate. For small values of the basic current shear, and for small or moderate basic wave 
amplitude, the instabilities are determined by a set of low-order resonances; for 
larger basic wave amplitude, these are dominated by the onset of a local wave-induced 
Kelvin-Helmholtz instability. For larger values of the basic current shear, this 
interpretation is modified owing to the appearance of a number of new effects. 

1. Introduction 
In two previous papers (Grimshaw & Pullin, 1985; Pullin & Grimshaw 1985, 

henceforth denoted I and I1 respectively) we studied the linearized stability of 
steady, progressive, periodic, finite-amplitude interfacial waves propagating on the 
interface between two fluids of densities p1 and pz, and undisturbed depths d ,  and 
d ,  respectively. The basic wave for these stability calculations was provided by the 
analytical and numerical solutions of Pullin & Grimshaw (1983~).  In  I and I1 we 
considered three space-dimensional perturbations to the basic wave describing a 
modulation with wavenumber (p, 9). Here p is the wavenumber component in the 
direction of propagation of the basic wave, q is the transverse wavenumber component, 
and the modulation is two-dimensional in the propagation space. In I we used an 
analytical approximation for long-wave modulations (i.e. lpl, 191 < (k,l where k, is 
the wavenumber of the basic wave) when the basic wave amplitude 6 is also small. 
The result was a nonlinear Schrodinger equation coupled to an equation for the 
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FIGURE 1. Basic current shear. Each layer contains fluid of constant density and uniform 
vorticity. The flow is bounded by rigid planes at y = -a2, y = d,. 

wave-induced mean flow, from which the stability properties of the basic wave could 
be determined for the whole of the parameter space defined by the density ratio p1/p2 
and kod l ,  kod,. In  I1 we used numerical calculations to continue the results of I to 
finite values of the modulation wavenumber (p, q )  and the basic wave amplitude 6 
for a restricted part of the parameter space (kod2+ 00 , in the Boussinesq limit 
pl/p2-t1). I and I1 together showed that instability occurred in bands in the 
(p, q)-plane associated with a sequence of low-order resonances. Here the order of the 
resonance is N, where N components of the basic wave interact with two infinitesimal 
waves. No N = 1 resonances were found, but all the higher-order resonances (N = 2, 
3, . . .) occurred. 

In  this paper we consider the linearized stability of the non-uniform steady flow 
consisting of finite-amplitude interfacial waves on the basic current shown in figure 
1. In each inviscid fluid the basic current has uniform vorticity w1 and w2 respectively 
corresponding to a basic horizontal current in the x-direction, -wl y and -w2 y 
respectively. We note that if each of the fluid layers has a small but finite viscosity 
,uj, in inverse proportion to their vorticities (i.e. ,ul w1 = p2w2), then the basic flow can 
be unstable to a viscous instability (e.g. Hooper & Boyd 1983). However, for very 
large Reynolds numbers this instability is confined to very short wavelengths which 
scale with the viscous diffusive length of one of the fluids, and are very much shorter 
than the typical wavelengths of atmospheric or oceanic internal waves. Moreover, 
this viscous instability has been established only for the unperturbed basic current 
shown in figure 1, and only when ,ul w1 = ,ul w2,  and may not be applicable to the 
non-uniform steady flow due to the presence of finite-amplitude waves. Large- 
amplitude internal waves are commonly observed on the oceanic pycnocline, or on 
atmospheric inversion layers, often in the presence of an underlying shear flow, and 
these phenomena proved the major motivation and potential application for the 
present study. Interfacial waves for the configuration shown in figure 1 provide a 
relatively simple model to study the effect of basic current shear on wave stability. 
Yuen (1983) has studied the stability of interfacial waves for the case when there is 
a basic constant current a,, j = 1,2, in each fluid, with a basic current jump (Cl - E2) 
across the interface. However, unlike the present case, this basic current is subject 
to a short-wavelength Kelvin-Helmholtz (K-H) instability, which persists for waves 
of small amplitude. Here the steady, progressive, periodic, finite-amplitude wave 
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solutions were obtained both analytically and numerically by Pullin k Grimshaw 
(1983b). In  the main we employ the same approach to wave stability used in I and 11. 
However, because three space-dimensional perturbations to the basic wave are not 
vorticity-preserving, the stability calculations reported here are restricted to two- 
space-dimensional perturbations, which can be taken as irrotational. The modulations 
to the basic wave are thus one-dimensional in the propagation space and, in the 
terminology introduced above, the modulation wavenumber is (p, 0) (i.e. q = 0). The 
one exception to this restriction occurs in $2, where we calculate the resonance curves 
for the full two-dimensional propagation apace. 

Relative to the basic current shear shown in figure 1, we let the perturbed flow 
have a velocity field u, = (u,, v,, w,) and a modified pressure q, = p,+p,gy, j = 1,  2 
in each fluid; p ,  is the pressure. The inviscid equations of motion in each fluid are 
then 

We also assume that the flow is incompressible so that V - u ,  = 0, j = 1, 2. The 
boundary conditions at the disturbed interface, y = q(x, z, t ) ,  are 

( 1 . 2 ~ )  

Q 2 - Q 1  = S(Pz-P1)% on y = 'I, (1.2b) 

while at the rigid boundaries 

v1 = 0, 

v2 = 0, 

on y = d,, 

on y = -d2.j 
We note that (1.1) and (1 .2a,b)  possess symmetry when u,+-u,, u,+-u, and 
x+ -x. For a two-space-dimensional flow (i.e. one-dimensional in the propagation 
space) we put w, = 0, and a/& = 0. It may then be shown that vorticity is preserved, 
and assuming that the perturbed flow introduces no new vorticity, we can assume 
that the flow in each fluid is irrotational and described by a velocity potential 4, and 
a stream function $,, where 

Here both q5, and $, satisfy the two space-dimensional Laplace's equation. The 
reduced pressure is given by the Bernoulli relation 

j = 1, 2. 

Much of the discussion that follows is presented in dimensionless variables based on 
the lengthscale 2/k, and the timescale (2/k,crg)f, where a = (p2-pl)/(p2+pl) is the 
Boussinesq parameter, and we recall that k, is the wavenumber of the basic wave. 
As far as possible we shall use the notation used in I and 11. Thus, the dimensionless 

where 24 is the crest-to-trough amplitude of the basic wave. Note, in particular, that 
P, &) are the dimensionless forms of the modulation wavenumbers (p, q). 

In $2 we consider resonant interactions of order N for infinitesimal waves in the 

f0rms of (2, y, z, t ,  P ,  !I, A ,  d,, 4, w1, 4 are (X, y, 2, T, p ,  &, 4 D,, D,, Q,, Q), 
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two-dimensional propagation space (i.e. the (P, ())-plane). The main purpose of this 
is to determine the sites for resonant instability. One interesting feature that emerges 
is the existence for & =l= 0 of an N = 1 resonance for sufficiently large values of the 
basic current shear, whereas it was shown in I1 that the lowest-order resonance is 
N = 2 in the absence of basic current shear (i.e. 52, = 52, = 0). In the Appendix we 
discuss the generic interaction equations for the N = 1 and N = 2 resonances in order 
to demonstrate the typical structure of the instability bands associated with these 
resonances. In $ 3 we consider the one-dimensional modulationel instability theory, 
analogous to that developed in I. This theory provides information about instabilities 
when () = 0, P Q 1 and S 4 1. The analytical results presented in $52 and 3 are 
generally valid for the whole range of the parameter space defined by a, D,, D,, 52, 
and a,, but the specific examples discussed are largely motivated by the oceanic, or 
atmospheric, internal-wave application for which we put a = 0, D, + m,Q, = 0 and 
consider a range of values of D, and a,. We also comment briefly on the application 
of our results to the air-water interface for which we put a = 0.9976 and let 
D,, D, + m. Our numerical results for the finite-amplitude basic wave reported in 
Pullin & Grimshaw (1983b) are confined to the parameter values a = 0, D2+ co, 
a, = 0 for a range of values of D,  and a,, corresponding to the oceanic and 
atmospheric internal-wave applications. Consequently our numerical results for the 
instability of finite-amplitude waves, presented in §$4 and 5 ,  are restricted to the same 
parameter values. We note that the corresponding numerical study of the instability 
of finite-amplitude waves at  an air-water interface, possibly in the presence of basic 
current shear, would fist require a calculation of the finite-amplitude basic wave 
states, which, to our knowledge, has not yet been carried out. In $4 the numerical 
technique is discussed briefly, as it is similar to that used in 11, and is based on the 
method developed by McLean et al. (1981) and McLean (1982a, b) for the instability 
of water waves, and was also used by Yuen (1983) for interfacial waves. As in 11, 
we find this numerical method provides results for wave stability when the basic 
wave amplitude lies in the range 0 < 6 < max(S). In  I1 we found that the limiting 
amplitude max(S) was determined by the onset of a local wave-induced K-H 
instability. That remains true here for small values of the basic current shear, but 
we also find that max(S) is determined by very slow convergence of the numerical 
scheme which is possibly associated with the development of a singularity in the 
perturbation. In $5 we present our numerical results for the one-dimensional 
instabilities (& = 0) corresponding to the N = 2 resonance. For small values of the 
basic current shear the results are generally similar to those of 11. However, as the 
basic current shear is increased some new effects appear. In  particular one branch 
of the N = 2 instability band stabilizes for sufficiently large values of -52,, and we 
conjecture that this may be due to the influence of an N = 1 resonance, which, while 
always transverse (& 4 0), for large values of -52, approaches the P-axis. Some 
analysis supporting this conjecture is discussed in the Appendix . 

2. Two-dimensional resonant interactions 
For small or moderate basic wave amplitudes we expect instability to be associated 

with a set of low-order resonances. This has been demonstrated for surface gravity 
waves by McLean et al. (1981) and McLean (1982a, b) ,  and for interfacial waves in 
the absence of basic current shear (w, = w2 = 0) by Yuen (1983) and in 11. The 
resonances are defined in terms of the dispersion relation for infinitesimal waves of 
wavenumber k = (k, 1)  and frequency cr corresponding to solutions of the linearized 
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version of ( l . l ) ,  (1.2a, b) and (1.3) in which 7 is given by an expression proportional 
to Re{exp (ikx+ilz-id)}. We find that 

where 

wk 02k2 
u*(k)  = --+signk 4 h ~  - { - 1f3hPK2+$y9 

(2.la) 

, (2.lb) 2(Pl w1 -Pz %) 
P 1 +  Pz 

o =  

(2.1 c, d) 

S, = cothKdi, i = 1, 2 and K = (k2+12)k (2.1e9.f 

The superscript ‘ & ’ indicates the presence of two branches of the dispersion relation, 
and will be omitted when both branches are being discussed. The sign convention 
in (2.1 a) is to ensure that a(k )  = -a( - k ) .  For real k ,  u(k)  is real-valued and hence 
the basic current shear is stable to infinitesimal perturbations. We also note that 
a*(k ;w)  = -cr’(k; - w )  with the consequence that for the basic wave it will be 
sufficient to consider just the upper branch Q+ (k ,  w )  with w taking both positive and 
negative values. Thus the ‘ lower-branch ’ infinitesimal and finite-amplitude steady 
wave solutions with w < 0, discussed in Pullin & Grimshaw (1983 b) are considered 
here as cr+ solutions with w > 0. 

Let us now suppose that the basic wave is propagating in the x-direction with a 
wavenumber k, = (k,, 0) and frequency v, = u+ (k,). This wave is then unstable 
owing to a resonant interaction with two other waves with wavenumbers k ,  and k ,  
and frequencies, u1 = a(k,)  and u, = a(k2)  whenever 

(2.2) k,  - kl = Nk,, C, - u1 = NU,. 
Here N is a positive integer and defines the order of the resonance. We expect the 
growth rates of the instability to be 0 ( S N )  where 6 is the wave steepness for the basic 
wave. In  the Appendix we present the generic equations describing the N = 1 and 
N = 2 resonances, and indicate how the growth rates and bandwidth of the 
instabilities could be determined. The wavenumber resonance condition can be met 
by choosing k,  = (p+nk,,q), and k,  = (p+nk,+ Nk,,q). Here p = @,q)  can be 
regarded as the modulation wavenumber of the instability and the resonance 
condition (2.2) determines a curve in the (p, q)-plane. Relative to the modulation, the 
instability is n-periodic with respect to the basic wave, where n is an integer. Note 
that there is a degeneracy in the choice of p since the instability depends only on 
the combination (p + nk,). However, the resonance curves are symmetrical about 
p = -nk,-?jNk,, q = 0, and following McLean (1982a, b) we remove the degeneracy 
by choosing n = -?jN for even N, and n = -!j(N+ 1)  for odd N. With this choice the 
resonance curves are symmetrical about p = 0, q = 0 for even N, and p = tk,, q = 0 
for odd N. In  the subsequent discussion it is useful to distinguish between a 
one-dimensional resonance when q = 0, and a two-dimensional or transverse resonance 
when q =I= 0, where we take the dimension to refer to the propagation space, rather 
than the physical space of the disturbance. All our results obtained from the 
modulational instability theory (see $3) or the numerical calculations (see $4) are for 
the one-dimensional case only. In order to facilitate comparison with the numerical 
calculations of $4, the resonance curves will be presented in non-dimensional form 
based on the lengthscale 2/k, (or A / x  where A is the wavelength of the basic wave) 
and the timescale (2/k,ag)f where a = (p2-pl ) / (p2+p1)  is the Boussinesq parameter 
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P 

FIQURE 2. (a) Resonance curves for H = 1, 8 < 0. Two different realizations are (i) D,, D,+oo, 
a+O, Sa, = 0, Sa = a,, (ii) D,, D z + w ,  a+l ,  Sa = -28,. (a) Resonance curves for H = 1, Sa > 0: 
no N = 1 resonances detected. * . . . . , N = 1; -----, N = 2; -, N = 3. Values of d2 shown. 

and the Boussinesq limit is a+O. The dimensionless parameters are now 
D , , ,  = +kod, , , ,51 , , ,  = (2 /k0ag) :o , , , ,P=  2p/k0,& = 2q/k0anda.Equations(2.1b,d) 
become respectively 51 = (l-a)8,-(i+a)8, and H = ~( i -a) f l ,+( i+a) f l ,> ,  
where 8 and H are the dimensionless forms of o and h. The resonance curves in the 
(P ,  &)-plane are functions only of 51 and H, and do not depend explicitly on a. 

The lowest-order resonance is N =  1 and corresponds to a triad interaction. It is 
readily shown that there are no one-dimensional resonances. Nor are there any 
transverse resonances in the absence of basic current shear (62, = 8, = 0). However, 
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FIGURE 3. (a) Resonance curves for H = 1.40, R < 0. One realization is D, = O.ln, Dp+0o, a+O, 
P, = 0 , P  = 62,. ( b )  Resonance curves for H = 1.40, P > 0: no N = 1 resonances detected. Values 
of rrP shown. For key see figure 2. 

for sufficiently large negative values of 51 a transverse triad resonance exists. Some 
typical resonance curves are shown in figures 2 and 3. In figure 2 we show results 
when D,, Dz+ 00. In this limit H +  1 and the resonance curves are functions only 
of the single parameter 51. The transverse triad resonance occurs for 51 < - 10.196, 
and at first appears as a small oval about the point P = 1, Q = 3.5956. As ISZ( 
increases the oval expands, and approaches the P-axis near the point P = 2. When 
either of D,, D, is finite, the resonance curves are functions of both SZ and H. To 
provide a comparison with the numerical results of 8 4 we show in figure 3 resonance 
curves for the case H = 1.4 as a function of 51, corresponding in one realization to 
D, = O.ln, D, --f a, in the Boussinesq approximation a = 0. The resonance curves are 
generally similar to those in figure 2, although the critical value of -51 for the 
appearance of the triad resonance is increased, and the resonance curves are displaced 

10 F L I  172 
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further from the P-axis. It is useful to estimate the dimensional basic velocity shear 
that would be required to generate a triad resonance in an oceanic environment. 
Taking a typical wavelength of 500 m for an interfacial wave, a = and 
52, x - 5 2 . 5 / ~  from figure 3(a), we find that the dimensional upper layer shear is 
o1 = 0.13 s-l. The required basic fluid velocity at y = 50 m is 6.6 m s-l, which, while 
not totally unrealistic, is rather larger than a typical observation. At the other 
extreme, consider an air-water interface with basic velocity shear in the lower layer. 
With D,, D,-f00, 52, = 0, 01 = 0.9976 we find from figure 2(a) that 52, x 16/x to 
generate a triad resonance. Taking a typical wavelength of 10 m for a surface gravity 
wave, we find that the dimensional lower-layer shear is w2 = 9.0 s-l, which is 
unrealistically large. 

The next resonance is N = 2 and corresponds to a quartet interaction. This 
resonance exist for all values of the parameters 52 and H. In the absence of basic 
current shear (i.e. 52 = 0) the resonance curve is a figure-of-eight, very similar to 
the resonance curve obtained for surface gravity waves (Phillips 1960). For small 
values of 1521 the resonance curve remains a figure-of-eight, but for larger vales of (521 
two new effects appear. We refer first to figure 2 where we show results for the case 
D, D,  + 00 (i.e. H + 1) when the resonance curves are functions of the single parameter 
B. First, for 52 < -2 the resonance curves detach from the original and form ovals 
centred on the origin, although we note that the origin satisfies the resonance 
condition as an isolated point. Next, for 52 > 2/3:, the resonance curves all pass 
through the point P = 2, Q = 0, and the angle of contact with the P-axis at this point 
varies from 0 at SZ = 2/34 to in as B + CO. In figure 3, where we show the case H = 1.4 
(corresponding to the realization D,  = O.ln, D,+oo, a = 0), the resonance curves 
show similar behaviour, although a larger value of -52 is required for the resonance 
curves to detach from the origin, and the limit point at P = 2, Q = 0 is only 
approached as 52+ oo . 

In the Appendix we have determined generic expressions for the growth rate and 
bandwidth of the N = 2 instability. In particular the instability band is defined by 
(see (A 10a)) 

e2G-IAI2 < G < e2G,IAI2, ( 2 . 3 ~ )  

where 2G = a(ko+p)+a(ko-p) -2a(ko) .  (2.3b) 

Here BA is the complex amplitude of the basic wave and G, are functions of k,, p 
and the basic-state parameters (here B,, a,, D,, D, and a). G is a detuning parameter 
which vanishes when the exact resonance condition (2.2) is satisfied. In the Appendix 
we show that near the origin of the (p, q)-plane, the instability criterion for the N = 2 
resonance reduces to that obtained from the long-wavelength modulational instability 
theory of small-amplitude waves. For the one-dimensional case (q = 0) this theory 
is presented in 33, and analytical expressions for bandwidth and growth rates 
found. Returning to (2.3a, b) for this one-dimensional case (q = 0), it is apparent from 
the resonance curves in figures 2 and 3 that there are two possible instability bands. 
One is located near the origin of the (P, &)-plane, and the other on the P-axis in the 
region P 2 2. Considering the band near the origin, it  may be shown that G < 0. Then 
if G, 2 0 a necessary condition for instability is that G- < 0 and the instability band 
includes the point P = 0. But if G, < 0, the instability band detaches from the point 
P = 0. Our numerical results presented in $5 show evidence of both cases, the former 
occurring for smaller values of the basic current shear. We conclude this brief 
discussion by noting that although there are no triad resonances when Q = 0, the 
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triad resonance curves approach the P-axis near P = 2 for sufficiently large values 
of -Q (see figures 2 and 3). In the Appendix we show that the proximity of a triad 
resonance to an N = 2 instability band may be stabilizing. Some evidence for this 
behaviour is presented from our numerical results in 95. 

All the higher-order resonances N 2 3 exist, and resonance curves for N = 3 are 
shown in figures 2 and 3. They are generally similar to those that occur in the absence 
of basic current shear (0 = 0) although we note that in figure 2 (Dl, D2+ 00)  all the 
resonance curves pass through the point P = 4, Q = 0 for Q > 2, and in figure 3 (D1 
finite, D2+ 00)  the resonance curves approach the point P = 4, Q = 0 as Q-t co. 

3. One-dimensional modulational instability for small-amplitude waves 
In $2 we noted that the origin, p = q = 0, is always a point (possibly isolated) on 

the N = 2 resonance curve. This implies the potential existence of a long-wavelength 
modulational instability for small-amplitude waves. The instability is best discussed 
within the context of the equations that describe slowly-modulated small-amplitude 
waves. For one-dimensional modulations (i.e. q = 0) the relevant equation is the 
nonlinear Schrodinger equation 

where 7 = € 2 t ,  g = E ( 2 -  Vt). (3.1b) 

Here q1 is the complex wave amplitude, and to leading order the wave is described 
by q1 exp(ik,x-iu,t), where go = a(k,) (i.e. ( 2 . 1 ~ )  with k = (k , ,O) ) .  The group 
velocity is V = au/ak and the coefficient h = +aV/ak, where both expressions are 
evaluated at k = k,. The coefficient v of the nonlinear term is determined by the 
interaction of the second harmonic and the wave-induced mean flow with the 
primary wave. The derivation of (3.1 a ) ,  which we shall sketch below, requires that 
6 be a small parameter, and the equation describes a balance between nonlinearity 
and wave dispersion about the dominant wavenumber k,. It is well known that the 
nonlinear Schrodinger equation (3.1 a )  is a generic equation describing undirectional 
wave modulation (see, for instance, Benney & Newel1 1967), and in particular it has 
been shown to describe the modulation of surface gravity waves (Zakharov 1968). 
Equation (3.1 a )  has the plane-wave solution with constant amplitude A 

rll = A exp (iv IAI27). (3.2) 

When this is subjected to modulational perturbations with real and imaginary parts 
proportional to 

Re {exp (&+i@g)), (3.3 

then there is modulational instability whenever Av > 0 and the growth rate 6 is given 
by 

62 = A@"2vIAy-A@". (3.4) 

There is instability for 0 < $2 < 2vA-lIAl2 with a maximum growth rate of v IAI2 at 
A$2 = v lA12. Note that the unscaled growth rate is s = e26 and the unscaled modulation 
wavenumber is p = @. 

In order to use (3.4) we must obtain an expression for the nonlinear coefficient v. 
10-2 
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In the absence of basic current shear (wl = w2 = 0), we derived in I a two-dimensional 
nonlinear Schrodinger equation coupled to an equation describing the wave-induced 
mean flow, which reduced to the form (3.1 a)  for one-dimensional modulations. 
However, the inclusion of basic current shear has the effect of introducing vorticity 
when two-dimensional modulations are considered, with the consequent presence of 
critical layers. This makes the derivation of equations describing two-dimensional 
modulations a difficult task, and since our numerical results in $4 are restricted to 
one-dimensional perturbations, for essentially the same reason, we shall consider only 
one-dimensional modulations here. In  this case the perturbed flow is described by a 
velocity potential (see 1.4) and (1.5) and the derivation of (3.1 a )  follows a similar 
course to that described in I. We shall give a brief outline, partly in order to develop 
notation. 

We shall find it useful to develop the theory for the case when the basic flow in 
each layer is G i - o t y ( i  = 1,2,  for the upper, lower layer respectively). Later we shall 
put Ti1 = G2 = 0. Modulated waves are described by 

00 

7 = C elnlyln(E,7) exp(in(kox-aot)), T - ~  = 7: (3.5) 
-m 

with similar expressions for #t. Substitution into the equations of motion and 
boundary conditions then gives 

where 

ED(?, & ) q , + N ,  = 0 ,  (3.6a) 

a , & = ko-is-, 
a t  

(3.6b) 

and 

where henceforth S, = coth kd,, Note that D(u,  k) = 0 generates the dispersion 
relation (2.1 a)  (with I = 0). Here N ,  represents nonlinear terms, and to O(eS) is given 

(3.7) 
by 

Nl = e3(v0+ v2)  lv1I2 71, 

where vo and v2 correspond to terms arising from the interaction of the primary wave 
with the wave-induced mean flow and the second harmonic respectively. We find that 

(3.8a) 

and 

p 2  u - V)2-fi(Til- V ) 2 - p 2 w 2 ( E 2 -  V ) + p l w l ( U l -  V ) .  ( 3 . 8 ~ )  
d l  

Do = (Pz-P1)9-;i-( 2 
2 
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FIQURE 4. Modulational instability; one-dimensional disturbances a = 0, D2+ 00, B, = 0, 
values of D, shown. (a) maximum growth rate, ( b )  bandwidth. 
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Note that Do is the limit as k+O of Do(kV,  k )  and does not vanish when U, = U2 = 0 
(i.e. there is no long-wave resonance). Next 

k-3v - 1  - 2 [ p 2 ( ~ - U 2 ) 2  (35;- l ) -p,(~--U,)~ (38;-1) 

&I{ ( c -  El) (38, + 8T1) + GI} -p2 92((c- U 2 )  (38, + 8;') - 9 2 1 3  

x [p2 S,'(c- U 2 ) 2 + p 1  s y y c  - UJ2I-1- 2pz(c - U2)2S2(S; - 2 )  

-2p1(c-U1)2S,(S~--2)  +p29,{2(c-U1) (8; - 1)  -gJ2(S2+S;1)) 

-pl 9,(2(c-U2) (8;- I )  +gJl(Sl +S,l)}, ( 3 . 9 ~ )  

where c = A  9, = wrk;' for i = 1 ,  2.  (3.9b) 

Expanding (3.6b) to O ( 8 )  we obtain (3.1 a) with 

cr 

k0' 

D , v  = vo+v,.  (3.10) 

Henceforth, we put U1 = U2 = 0. It is then readily shown that A < 0 and hence for 
instability to occur we must have v < 0. Since D, < 0 instability requires that 
(vo+ v2) > 0. But from ( 3 . 8 ~ )  vo < 0 and hence the interaction of the primary wave 
with the wave-induced mean flow is stabilizing and instability requires that v2 be 
sufficiently negative. In presenting our results we again use non-dimensional co- 
ordinates based on the lengthscale 2 /k0  and the timescale (2 /k0  q ) t  where we recall 
that a = @, -p l ) / (pz  + p l )  is the Boussinesq parameter. The dimensionless para- 
meters are D,, = !jkod,, 2, 52,. = (2/k0ag)f w,, , and a. The non-dimensional 
modulation wavenumber is P = 2@/k0 and the non-dimensional growth rate is 
S = e 2 8 ( k 0 q / 2 ) .  Further it is apparent from (3.4) that P scales with the non- 
dimensional amplitude S = ekolAl and the growth rate S scales with a2. Hence our 
results are expressed in units of PS-' and SiV2. 

In general the coefficients v and A are complicated functions of the parameters 
D,, D,, Q,, 52,, and a, and hence we have evaluated them numerically. All our results 
are for an upper-branch basic wave (i.e. no = a+(ko)  in (2.1 a)). Some typical results 
are shown in figures 4 , 5  and 6 for the growth rate and bandwidth of the modulational 
instability deduced from (3.4). It is apparent that basic current shear, represented 
by the parameters 52, and Q,, can in some circumstances dramatically increase the 
growth rate of the instability, and in other circumstances remove the instability 
altogether. For simplicity let us consider the case of infinitely deep fluid on both sides 
of the interface, i.e. D,, D , - f00 ,  and note that for the finite values of D, or D, 
shown the results are generally similar but with reduced growth rates. When 
D,, D,+ 00, v and A are functions of just three parameters Q,, 51, and a and some 
analysis is possible. 

Consider first the case SZ, = 0, when the basic current shear is confined to the upper 
fluid. In figure 4 we show the case a x 0, which we remind the reader corresponds 
to potential oceanic or atmospheric applications. There is instability for nearly all 
values of a,, with the growth rates generally increasing as I52,I increases. However, 
as 52, +- 00 there exists a critical value SZ, x - &a-l such that for 51 < 51, there 
is modulational stability. The dimensional value of 52, is wlC x - 2 ( k 0 g / a ) k  As a 
increases there is modulational stability for 52 < 52, < 0, where 52, at first increases 
with a, but then decreases; as a+l ,  52, x - 2 . 1 2 ( 1 - a ) - f .  For 0.347 < a < 0.5 
there is also modulational stability for 0 < 52& < 52, < 52::; as a-tO.5, 52:: N 00 

and for a > 0.5 there is modulational stability for 52 > where atc x 2.12(1 -a)* 
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FIGURE 5, (a) Cutoff parameters S,, St, and St: for modulational instability D,, D,+oo, 
SZ, = 0. Also S,, for S, = 0. ( b )  Modulational instability boundary in fourth quadrant of 
(Q,, a,)-plane, D,, D,+ co, a = 0. 

as a+ 1. The variation of these boundaries with a is shown in figure 5(a) .  The case 
a x 1 is shown in figure 6, where the value of a corresponds to an air-wafer interface, 
and shows that basic current shear in the air reduces the growth rate of the 
modulational instability of deep-water surface gravity waves. 

Next, we again let D,, D,+co, and put. sd, = 0,  so that the basic current shear 
is confined to the lower fluid. There is modulational stability for SZ, > .(azc > 0 where 
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0.2% T 
-40 - 20 0 20 40 

Ql 

FIGURE 6. Modulational instability. a = 0.9976, Dl+ 00, 9, = 0. Values of D, shown. 
(a) maximum growth rate, (a) bandwidth. 

QZc x 2k-l as a+O (the corresponding dimensional value is wlC x 2(k0g/a)4) and 
Q,, decreases to f46 x 1.633 as a -+ 1. The variation of a,, with a is shown in figure 
5(a ) .  The case a E 1 is shown in figure 7, where the value of a corresponds to an 
air-water interface, and shows that sufficiently large positive basic current shear in 
the water eliminates the modulational instability of deep-water surface gravity 
waves, but that negative basic current shear increases the growth rate. 
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FIGURE 7.  (a) Maximum growth rate of modulational instability: a = 0.9976, D,+ m. 8, = 0. 
(a) Bandwidth of modulational instability: a = 0.9976, D,+ 00, 8, = 0. Values of D, shown. 

Finally in the Boussinesq limit a+O, v and h are functions of Q,, 51,. It can be 
shown that there is modulational instability for all values of a,, 51, except for a certain 
region in the fourth quadrant of the (Q,, 0,)-plane (see figure 5 b ) .  It should be noted 
here that the limits a+O and either (51,(+ao or lQ,(+oo do not necessarily 
commute. 
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4. Numerical analysis for one-dimensional instability 
Here we present numerical calculations of the one-dimensional linearized instability 

of the basic wave for finite values of the basic wave amplitude 6 and finite values 
of the modulation wavenumber P, thus complementing the analytical results of 
$3. The basic flow consists of the basic current shear (see figure l ) ,  together with 
the finite-amplitude progressive interfacial waves described both analytically and 
numerically in Pullin & Grimshaw (1983b). In dimensionless variables the basic wave 
has crest-to-trough amplitude 26, and is periodic in the X-direction with period x .  
The numerical solutions for the basic wave were confined to the parameter space 
a = 0, D2+ 00, 0 < D,  < co, Q, = 0, lSZll 3 0 (motivated by potential oceanic or 
atmospheric applications) and 0 < 6 < amax, where a,,, corresponds to the highest 
wave that could be found numerically. 

Since three-space-dimensional perturbations are generally not vorticity -preserving, 
we shall restrict our attention to two-space-dimensional perturbations (i.e. one- 
dimensional in the propagation space), for which we may assume that the perturbed 
flow is irrotational. In the terminology of $2 our numerical results are thus restricted 
to the case when the modulation wavenumber is one-dimensional (i.e. Q = 0). The 
important case of two-dimensional, or transverse, instability (i.e. Q + 0) cannot be 
formulated within the framework of irrotational flow, and awaits further study. We 
also note that there may be one-dimensional instabilities corresponding to a 
two-space-dimensional perturbations which perturb the vorticity field, but since 
these also cannot be described by irrotational disturbances to the basic wave, they 
are not considered here. 

The numerical method used is a straightforward extension of that developed by 
McLean et al. (1981) and McLean (1982a, b) for the instability of water waves, and 
utilized by Yuen (1983), and in 11, for interfacial waves in the absence of basic 
current shear. Hence we shall give only a brief outline of its salient features. We 
choose a frame of reference at rest with respect to the steady progressive wave. Using 
non-dimensional variables and the Boussinesq approximation a + 0, the boundary 
conditions can be obtained from (1.2a, b) and (1.5) and are 

(4.1 a, b)  a7 a7 a + ( U j - S Z j 7 ) a  = V,, j = 1,  2, on Y = 7, 

+ Kc u, - Q, r) ,  + c - ( u, -a1 712 - v:> 
and 

a#, a q  
aT i3T 

- ~ 2 ( ~ ~ - ~ 5 2 2 ~ 2 ) - 4 1 ( ~ 1 - ~ ~ 1 ~ 2 ) + 2 ~  = 0, on Y = 7. ( 4 . 1 ~ )  

Next we let SZ, = 0, D2+ 00 and put 

'I = + r'(& TI, ( 4 . 2 ~ )  

@, = q x ,  Y ) + q q X ,  Y, T), j = 1 ,  2 (4.2 b )  

(4.2 c) 

where i j ,  Sj and Yl are the solutions for the steady finite-amplitude basic wave, and 
q', 4; and $1 are the small perturbations. Substituting (4.2a, b,  c) into (4.1a, b,  c) 
and linearizing about the basic wave solution gives a set of boundary conditions 
evaluated on Y = ijl(X) which are linear in T', 4; and $1. Noting that g5; and $; 
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satisfy Laplace’s equation, and using the boundary conditions a t  Y = D, and as 
Y +  - a, we seek solutions of the form 

m 

7’ = exp (ST+ iPX) Z a, exp (2imX), ( 4 . 3 ~ )  
-m 

m cash [R,(D,- Y)] 
g5; = exp (ST+iPX) Z b ,  exp (2imX) (4.3b) 

(4.3c) 

-m cosh [R, D,] ’ 

co sinh [R,(D, - Y)] 
-W cosh [R, Dl]  ’ II.; = - i exp (ST+ iPX) c 6, exp ( 2 i m ~ )  

aJ 

4; = exp (ST+ iPX) Z c, exp(2imX) exp [R, y], (4.34 
-aJ 

where R, = 12m + PI, 6, = b ,  sign (2m+ P), P is the modulation wavenumber and 
S is the growth rate. Substitution of ( 4 . 3 ~ 4 )  into the linearized boundary conditions 
then gives an eigenvalue problem for the complex coefficients (a,, b,, c,) and the 
eigenvalue S. Instability corresponds to Re (S) > 0. 

When S = 0, the solution is that for infinitesimal waves on the basic current shear 
(see figure 1). The eigenvalues are S, = -i%;, where 2; can be obtained from the 
dispersion relation (2.la) with a = 0, Q, = 0 and D2+ 00. Thus we find that 

i?; = C0(P+2n)+ W*(P+2n), ( 4 . 4 ~ )  

where (4.4b) 

and C, is the phase speed of the basic wave, i.e. C, = fW+(2). If we put k = P+2n, 
then &; = - C,, k + Wf (k) and corresponds to the linear dispersion relation in a frame 
of reference moving with speed C,. For small 8, instabilities occur whenever two of 
these linear modes satisfy the resonance condition 

%,(PI = +,+,(P) (4.5) 

for specified P and some integers n, N. Here the superscripts ‘ f ’ are omitted as 
both branches can participate in the condition (4.5). Identifying k, = P+2n,  
k, = P+2n+2N and k, = 2 it is readily seen that the resonance condition (4.5) is 
equivalent to (2.2), although here we are restricting attention to the one-dimensional 
case (i.e. Q = 0). In 92 we identified the resonance curves on which (2.2), or (4.5), 
is satisfied, and thus determined the values of modulation wavenumber P around 
which the instability bands will be located for small 6. We recall that for one- 
dimensional instabilities, the N = 1 resonance condition cannot be satisfied and the 
lowest-order resonance is N = 2. 

When S and P are both small, the modulational instability theory of 93 applies 
and describes the features of the one-dimensional instability corresponding to the 
N = 2 resonance for S x 0 near P = 0. For finite values of P, and for finite 6, the 
eigenvalue problem for S must be solved numerically. First, the infinite series in 
( 4 . 3 4  are truncated at m = M. The linearized boundary conditions are then 
satisfied at 2M+ 1 points on a single wavelength, 0 < X < x ,  of the basic wave, with 
the various coefficients (which contain functions of ?j(X), $,(X, Y) and Fl(X, Y) 
evaluated on Y = ?j(X)) being calculated from the progressive wave solutions 
obtained by Pullin & Grimshaw (1983b). This procedure results in a discrete 
( 6 M + 3 )  x ( 6 M + 3 )  eigenvalue problem with eigenvector [apM . . . a,; b- ,  . . . b,; 
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c - ~  . . . C M ] ,  which can be solved numerically by codes based on the well-known QZ 
or LZ algorithms. As in 11, the (6M+3) x (6M+3) system contains a (2M+ 1)-fold 
degeneracy due to overspecification of the boundary conditions on Y = j ( X ) .  This 
degeneracy can either be removed through contraction based on matrix implementa- 
tion of the sufficient boundary conditions (see 11), or the larger degenerate system 
can be handled directly, with some computational penalty. Both options were 
utilized, and comparisons between the respective results were used as one check on 
accuracy. 

The calculations reported here were obtained in that portion of the basic wave 
parameter space defined by D, +. co. 0 . 5 ~  and O.ln, - lOO/n < 51, < 5 and for 
S = 0 .005~ ,  O.Olx, 0 .025~  and 0 . 0 5 ~ .  The truncation number M varied in the range 
10 < M < 50, and all computations were carried out in double precision (14 figure) 
arithmetic, using both VAX 11/780 and IBM 3083 machines. The values of 6 used 
were always less than max(S) (a function of Q, and D l ) ,  which is that basic wave 
amplitude beyond which we could not obtain satisfactory convergence of the 
physically significant eigenvalues with increasing M. In I1 (i.e. 51, = 0) we found 
that max(S) was determined by the onset of a wave-induced local K-H instability 
which overwhelmed the resonant instability as S+ max(S) ; we also found that 
max(S) < amax, where S,,, is the highest basic wave amplitude. 

With 51, + 0, although local K-H instability was still found, max(d) appeared to 
be determined by two related effects. First, examination of the behaviour of the 
coefficients [a-M, . . . , a,], M x 50 for 0 . 0 5 ~  < S < 0.075~,  with 51, = - 10/n 
showed some evidence of algebraic-like decay for 1 Q m < 50. It is well-known 
that algebraic decay of the Fourier coefficients of a nearly periodic function defined 
on a real line (e.g. (4.3)) is characteristic of the near proximity to the real axis of a 
branch point singularity of the analytically continued function (e.g. see Carrier, 
Krook & Pearson 1966, p. 256). This can lead at best to very slow convergence of 
the Fourier expansion of the function, or, a t  most, to loss of analyticity should the 
singularity touch the real axis. However, M = 50 is far too small for a quantitative 
test of this possibility by numerical analysis of the moderate- and large-wavenumber 
Fourier coefficients in (4.3~4). We note that this behaviour is not uncommon in the 
modelling of surface or interfacial phenomena (Saffman & Yuen 1982). 

Secondly, the onset of algebraic-like slow decay of the Fourier coefficients was 
always accompanied by a rapid decrease in accuracy of the calculated eigenvalues. 
This can be measured in various ways. For instance, it may be shown from the 
degeneracy in the choice of P that when P is an odd integer, for an exact calculation 
all eigenvalues with Re S + 0 occur as a quartet of independent conjugate pairs, say 
(Sk, - 8:) and ( -S+ S!,) for certain indices k and -j, where S k  = 8,. The difference 
IRe (Sk-S-5)l then gives an estimate of the errors due to round-off and truncation. 
Indeed, numerical evidence indicated that the error estimate IRe (Sk- S+)(/Re (8,) 
calculated with a truncation value of M, was always consistent with the error estimate 
IRe (8k-Sk)I/Re (8 ), where gk is the kth eigenvalue for a truncation value of 
&(& > M), and & is sufficiently large to ensure convergence with respect to 
increasing M .  For instance, with D1+ a, SZ, = - lo/%, 6 = 0 . 0 7 ~  and P = 1 with 
M = 50 we find that IRe (Sk-S-5)I/Re (8,) -O(lO-l), but for this same case with 
S = 0 . 0 5 ~ ,  IRe (S,-S+)I/Re (Sk)  - O(lO-'). Thus the possible proximity to the real 
axis of a branch point singularity leads to a slow convergence of (4.3), giving in turn 
increased round-off and truncation errors in the eigenvalue solver. Improved 
accuracy thus requires either a larger value of M, or the use of a higher-precision 
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FIQURE 9. Calculated growth rate of N = 2 instability: a = 0, D, = O.ln, D2+ ~ l ) ,  0, = 0. Values 
of nQ, shown. For key see figure 8. No N = 2- instabilities were detected for 8/Q = 0.05, 
- 1oo/n < Q, < 0. 

arithmetic ; both these options were impractical with available computing resources. 
Alternatively, a different representation of q’, 4; and $;, which is more rapidly 
convergent than (4.3), is needed. 

5. Results and discussion 
The main results of our numerical calculations are for the N = 2 resonant 

instabilities, and are shown graphically in figures 8-12. We recall that the growth 
rate of the resonant instability of order N is expected to be O(SN) for small values 
of the basic wave amplitude S. A thorough search of the P-axis in the range 
0 < P < 2, for D, + 00, and a range of Q,, showed no indication of any instability 
with Re (8) - O(S) in the range 0 < S < 0 . 0 5 ~ .  This is consistent with the result of 
$2 that there are no one-dimensional N = 1 resonances. For the N = 2 resonance, 
some typical resonance curves are shown in figures 2 and 3. From these curves we 
expect to find two instability bands, one in 0 < P < 2 and the other in P 3 2. Note 
that this remains true even when the N = 2 resonance curve detaches from the origin 
of the (P, &)-plane as P = & = 0 remains an isolated point on the resonance curve 
(i.e. P = Q = 0 is a solution of (2.2)). We shall refer to these two bands as N = 2- and 
N = 2+ respectively. The modulational instability theory presented in $3 treated the 
N = 2- band for the limit 6+0. The present numerical results are a study of N = 2- 
and N = 2+ instability bands as functions of D,, Q and 8. For S = 0.05a, some N = 3 
instability bands were detected at  values of P near those indicated by the resonance 
curves in figures 2 and 3. Although these may be more significant at larger values 
of S, no systematic study of the N = 3 instability bands was attempted here. 

In figures 8(a,  b )  we show the behaviour of the N = 2- band for the case Dl+ 00,  

$2, < 0 (recall that for all the numerical results Dz+ 00 and SZ, = 0). The maximum 
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FIGURE 10. (a) Maximum growth rate of N = 2- instability: a = 0, D,, D,+co, 52, = 0. (a) 
Bandwidth of N = 2- instability: a = 0, D,, D2+co, Sa, = 0. -, Modulational instability. 
Symbols are the numerical results: A, 8/a = 0.005; 0, S/a = 0.01 ; 0 , 8 / a  = 0.025; 0 , 8 / ~  = 0.05. 



298 D.  I .  Pullin and R. H .  J .  Grimshaw 

Re(S) 
62 

- 10 - 5  0 5 - 15 

- 15 

0, 
FIGURE 11. (a) Maximum growth rate of N = 2- instability : a = 0, D, = O . h ,  D, + CO, Sa, = 0. 

(b) Bandwidth of N = 2- instability: a = 0, D, = 0.5rr, D,+ a, B, = 0. For key see figure 10. 
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FIGURE 12. (a) Maximum growth rate of N = 2- instability: a = 0, D,  = O . l r ~ ,  D,+CO, Q, = 0. 
(b)  Bandwidth of N = 2- instability: a = 0, D, = O.ln, D,+ CO, f2, = 0. For key see figure 10. 

growth rate and the bandwidth initially increase with increasing 1QJ. For 
51, x - 3 2 1 ~  and 6 = 0 . 0 1 ~  (figure 8a), and for sd, x - 16/x and 6 = 0.025~ (figure 
8b) the N = 2- band detaches from the origin, and then moves along the positive 
P-axis, finally contracting and vanishing at P = 2. The values of 0, at which the 
N = 2- band disappears are indicated in figures 10(a, b )  where we have compared 
the growth rate, Re(S)/P, and the bandwidth, APl6, with the predictions of the 
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modulational instability theory of $3. This behaviour is similar to that found for the 
structure of the N = 2- band with increasing 6 for surface gravity waves on deep 
water (McLean 1982a; Yuen & Lake 1982). However, for this case of surface gravity 
waves, the whole of the N = 2 band contracts into P = 2 for sufficiently large 6, and 
is eventually absorbed by the N = 3 band. Here, in contrast, the N = 2+ band 
increases both in growth rate and in bandwidth while moving to larger values of P 
in the region P > 2 as I52,J increases ; in figure 8 (c) we give an illustration of this for 
6 = 0 . 0 5 ~ .  This suggests that, at least for 0 < 6 < 0 . 0 5 ~ ,  the N = 2 band remains of 
finite extent in the (P,&)-plane; here, of course, we have only calculated the 
intersection of the band with the P-axis. It is interesting to note that the value of 
52, z - 19, for which the N = 2- band disappears at  P = 2 for 6 = 0 . 0 0 5 ~  (the 
smallest value of S considered), is similar to the values of 52, for which the N = 1 
resonance approaches the P-axis at P = 2 (see figure 2a). We thus speculate that it 
is the proximity of the N = 1 resonance curve to the P-axis that is responsible for 
the stabilization of the N = 2- instability band at large values of -52,. In the 
Appendix we analyse the structure of the quartet equations which describe the 
N = 2 instability for small 6, and show that stabilization is possible as a triad 
resonance is approached. 

In figures 10, 11 and 12 we have compared the numerical predictions of 
max[Re (S)/S2] and AP/S2 for the N = 2- instability band with the results from the 
modulational instability theory of $3 (see figure 4) for the cases D,+oo, 0 . 5 ~  and 
0 . 1 ~  respectively. The bandwidth is obtained numerically as A P  = Pma,- Pmin, 
where Pmax, Pmin are those points on the P-axis where Re (S) = 0 for N = 2-. 
Generally the trend is for the numerically calculated values of Re (8) and A P  to grow 
more slowly than the modulational instability theory would require, viz O(S2) and O(6) 
respectively. However, the validity of the modulational instability theory requires 
S small, and Re(S)/S2, AP/S both O(l), so that the differences for the numerical 
results will increase for large IQJ, as well as when S increases. 

The detachment of the N = 2- band from the origin, discussed above for the case 
D,+co, also occurs for D,  = 0 . 0 5 ~ ~  but at a larger value of -52, for the same value 
of S. However, for this case, the numerical results showed no evidence of contraction 
of the N = 2- band towards P = 2, at least for -6O/n < 52, < 0. With D,  = O.lx, 
there was again no evidence for detachment of the N = 2- band from the origin, a t  
least for - lOO/x < 52, < 0. For this case no N = 2- instability band was detected 
for 6 = 0 . 0 5 ~ ,  although the band exists for 6 = 0 .005~ ,  0 . 0 1 ~  and 0 . 0 2 5 ~  (see figure 
9 and figures 12a, b ) .  However, a vigorous N = 2+ instability band does exist for this 
amplitude (i.e. S = O.O5x, see figure 9). Referring again to figure 9, we note that the 
N = 2+ band appears to be approaching P = 2 from above as 52, increases, and 
becomes positive, although this feature is more noticeable for S = 0 .025~  than for 
S = 0 . 0 5 ~ .  No detailed calculations for 52, > 0 and D ,  = 0 . 0 1 ~  were attempted. 
Nevertheless i t  seems that the general features of the N = 2 instability band for 
D, = 0 . 0 1 ~  are consistent with the resonance curves shown in figures 3(a, b )  and 
discussed in $2. In particular, the relatively slow approach of the N = 1 resonance 
curve t o  the P-axis at P = 2 compared with the case D, + co is consistent with our 
failure to find detachment of the N = 2- band from the origin. Also the approach 
of the N = 2+ resonance curves to P = 2 as S2, + 00 is consistent with the results of 
figure 9. 

In I1 (the case 52, = 0) we argued that wave-induced local K-H instability was 
responsible for the bands of very large unstable eigenvalues that appeared in the 
spectra for large values of m. Here, with 52, + 0, we find qualitatively similar 
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FIGURE 13. Calculated Re@) spectrum: a = 0, D,, D2+co, P = 1.0, 8/n = 0.05, (a) Q, = 0, ( b )  
51, = -2, (c) Q, = -15/x. Only case (c) contains a resonant instability at m = -2, 1. local 
K-H instability at basic wave crest; -. - . -, local K-H instability at basic wave trough (out of range 
for (c)). 

Basic wave crest Basic wave trough 

Ql 01 U2 Ul & 
0 -0.9408 -0.5067 -0.5067 -0.9408 

-2 -1.0348 -0.6518 -1.0284 -1.2882 
- 1 5 / ~  -1.2447 -0.95031 -1.7921 -1.9548 

TABLE 1. Local conditions at the basic wave crest and trough, used in the calculation of 
the local K-H instability. 

behaviour, but interestingly we find that for a, < 0, as -al increases, the growth 
rate decreases (see figure 13). The mechanism proposed in I1 may be applied here. 
Thus, let U1, w1 and E2, w2 be the uniform fluid velocity and vorticity respectively 
above and below an infinite vortex sheet. Then it is readily shown from the 
appropriate linear dispersion relation (see, for instance, (3 .6c)) ,  that the complex 
growth rate d of a one-dimensional disturbance of wavelength k is given by (using 
dimensional coordinates) 

Ad2+iBd+C = 0, 
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where Pz 8 2  + P1 8 1  

k '  
A =  I 

In figure 13 we show the Re(S) spectrum obtained numerically for the case 
D, , D, + 00, 8, = 0, Q1 = 0, - 2 and - 15/x for 6 = O.O57c, P = 1 and M = 50, and 
compare this with Re (S) calculated from the dimensionless form of (5.1) with 
k = 2m + P ,  and ol, U, obtained from the local values at the basic wave crest and 
trough. When 8, = 0 local conditions along the upper and lower halves of the basic 
wave profile are kinematically identical (owing to symmetry) and there is evidently 
some reinforcement amongst unstable waves generated in each region. However, for 
8, + 0, conditions at the crest and trough differ. Indeed I ul- 0.1 is larger a t  the 
crest, leading to the prediction that local K-H instability will occur at  lower 
wavenumbers at the crest, compared with the trough (see figure 13b). Figure 13 (b,  c )  
show the attenuation of the strongly unstable eigenvalues a t  large values of m, 
as - 8, increases. We have attributed this to the reduction of I U1 - U2l at the wave 
crest and trough as -8, increases (see table 1 ) .  The poor agreement between the local 
criterion and the numerically calculated spectra can perhaps be explained by the lack 
of cooperative reinforcement between local K-H disturbances when crest and trough 
conditions are different. 

6. Conclusions 
In this paper we have extended the results of 11, for the linearized stability of 

interfacial waves, to the case when the interfacial waves are propagating on a basic 
current shear. Although our results are generally restricted to one-dimensional 
instabilities, it  seems clear that for small values of the basic current shear the same 
interpretation for the instabilities as given in I1 applies here. Thus, for small or 
moderate basic wave amplitudes, the instabilities are determined by low-order 
resonances, with the N = 2 resonance being the most dominant. In  this respect the 
results obtained here are similar to the corresponding results obtained for water 
waves by McLean et al. (1981) and McLean (1982a,b). For larger basic wave 
amplitudes the dominant instability mechanism is a local wave-induced K-H 
instability. 

However, as the basic current shear is increased some new effects appear. One of 
the most interesting is discussed in $2 where we show that at sufficiently large 
negative values of 8, there is transverse N = 1 resonance. Although our numerical 
results are restricted to one-dimensional instabilities, there is good reason to believe 
that this N = 1 resonance will lead to an instability band with growth rates O(6)  for 
small values of the basic wave amplitude; if so, this instability would dominate the 
higher-order resonances. Although our numerical results in this paper are all for 
interfacial waves in the Boussinesq limit a+O, the resonance curves calculated in 
$2 are valid for all values of a, and in particular, are valid as a+ 1 which is the limit 
describing water waves in the presence of basic current shear. Thus our comments 
made above regarding the N = 1 resonance can be applied to this situation also. Our 
numerical results show that sufficiently large negative values of 52, stabilize one 
branch of the N = 2 instability band. We conjecture that this is caused by the 
proximity to the P-axis of the N = 1 resonance. Although our numerical results are 
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restricted to one-dimensional instabilities, i t  seems likely that as the N = 2 instability 
band is stabilized, it is replaced by a stronger, but transverse, N = 1 instability band. 
The effects of very large basic current shear are also apparent in the modulational 
instability theory of $3, where the stability characteristics showed a strong dependence 
on a, and a,. Most notably, the range of validity of the modulational instability 
theory with respect to the basic wave amplitude is greatly reduced when the basic 
current shear is large. 

The most serious limitation of the present results is the restriction to one- 
dimensional instabilities (with the exception of the calculation of the resonance 
curves of 8 2). Since two-dimensional instabilities are not vorticity-preserving in the 
presence of basic current shear, it would seem that the formulation used here (and 
in 11) in terms of irrotational flow, cannot be extended to the calculation of 
two-dimensional instabilities. A new approach is needed, which, at  the very least, is 
likely to be an order-of-magnitude greater in computational complexity. Another 
limitation of the results obtained here (and in 11) is the restriction to interfacial waves 
as a model of oceanic, or atmospheric, internal waves. We are currently investigating 
the formulation of a similar problem for waves in continuously stratified fluid. 

The contribution of D. I. Pullin to the present work was supported by the 
Australian Research Grants Scheme under Grant no. F8315031 R. 

Appendix. Amplitude equations for low-order resonant interactions 
Consider a fmite set of interacting discrete waves where the nth wave is given, to 

leading order in E, by 
- 

€a&) exp (ik,*x-iu,t), 

where u,, = r(kn). (A 1b) 
Here E is a small parameter measuring wave amplitude, u(k) is the linear dispersion 
relation, and we adopt the sign conventions u(k) = -a(k), k-, = - k,, and a_, = a,*. 
Then for a weakly nonlinear physical system i t  is well known that the asymptotic 
differential equations governing the wave amplitudes a,@) are (see, for instance, 
Benney 1962; Benney & Newel1 1976; Hasselmann 1966, 1967; Phillips 1960; or 
Yuen & Lake 1982) 

= EC, Z f l m ,  a? a$ exp (ig, t )  + e2u, Fklmn a: a: a$ exp (iG, t )  + o(E3) 
I ,  m k ,  1 ,  m at 

(A 2a) 

where gn = U , + u m + Q n ,  (A 2 b )  
and @n = u k  + uz + r m  + Un. (A 2 4  
The coupling coefficients f,,, = f(k, ,  k,, k,), and Fklmn = F(kk, k,, km, k,) we 
non-zero only for those combinations of wavenumbers such that k, + k ,  + k,  = 0 or 
k,+ k,+k,+ k ,  = 0 respectively, and satisfy the reality conditions f-,-,-,, = f Am 
and F-k-l-m-n = F&,,,. For a conservative physical system Hasselmann (1966) has 
shown that they are also symmetric for a suitable choice of amplitudes a,. The 
physical system considered in this paper is not necessarily conservative as it is 
possible for energy to be delivered to the wave field from the basic current shear. 
Nevertheless, although we have not computed the precise value of the coupling 
coefficients, some significant conclusions can be drawn from the amplitude equations 
(A 2a). 
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First, for a triad resonance gn is O(s), and the amplitude equations may be 
truncated at the s-term (i.e terms of O(s2) on the right-hand side can be neglected). 
The resulting truncated equations can the be used to demonstrate the instability of 
a basic wave of wavenumber k,  due to resonant interaction with two other waves. 
In the notation of $2 this is the N = 1 resonance, where we identify the triplet 
(kt ,  k,, k ,  with (k, ,  -k2 ,  k,)  (see (2 .2 ) ) .  The basic wave of amplitude a, is then 
perturbed by waves of amplitudes a, and a2. It is then readily shown from the 
truncated form of (A 2a) that when la,[, la2[ 4 Iu,~, 

aa 
at 

i 2  x S ~ U ,  f-201 a2 a: exp (igt), 

. aa, 
1 at x s2a2 f f0-2 a, a, exp ( - igt), 

where g = u,+u,--a2. (A 3 4  

by 
It is readily shown that 0,. are proportional to exp ( s t )  where the growth rate is given 

(A 4) 

For a conservative system, f-201 = flo-2 and there is instability whenever ulu2 < 0 
(this argument is due to Hasselmann 1967). In  general, whenever (A4)  predicts 
instability, the instability is centred on the N = 1 resonance curve with a bandwidth 
8 which is O(s) and a growth rate which is also O(s). 

In the absence of a triad resonance, gn is bounded away from zero, and to O(E) the 
particular solution of (A 2a)  for the triad interactions is 

= -+82-s24u 1 u 2 f -201 f 1*0-21ao12. 

When this is substituted into (A 2a) we obtain the following equation for quartet 
interactions : 

* aan = €2 E Pklmn a; a: a: exp (iG, t)  + o(s3), (A 6 4  
l a t  k ,  1 ,  m 

where 

Here the sum is over all wavenumbers k,  = k, - k,. We now assume that Q, is 
O(s2), corresponding to a quartet resonance. In  the notation of $2 this is the 
N = 2 resonance, and (A 6a) can be used to demonstrate the instability of the basic 
wave due to a sideband modulation. The argument has been described by Yuen & 
Lake (1982) and so we give just a brief outline here. The basic wave solution of 
(A 6 a )  occurs when the quartet (kk,  k, ,  km, kn)  is given by (k,,, -ko,  -ko, k,) and 
permutations of the first three wavenumbers. The solution is 

a, exp (iv la,I2 s2t), k ,  = k,, 
kn 9 ko, 

where v = -ZP(k,,-k, ,  -k,, ko) .  (A 7 b )  

Here the sum is over all permutations of the first three arguments, and P(kk, k,, k,, 
k,) = Pklm, .  This is now perturbed by modulations with wavenumbers k , f p  and 
amplitudes a* corresponding to the quartets (k,, -k,, -k ,Tp,  k ,+p)  and ( -k , ,  
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-ko, k,Tp, k,f p) together with permutations of the first three arguments. Here 
p is the modulation wavenumber defined in $2. The equations governing a* when 
bfl 4 la01 are 

.a% 
1- = €2p*~uoya* +s2y a ,I2 a: exp (2iGt + 2iv laO12 s2t), at 

where pf = ZlWo, -ko7 -koT~ ,k ,+p) ,  (A 8 b )  

y* = w - k , ,  -k,,k,TP,k,fP), 

2 0  = a(ko +p) + a(ko -p)  - 2a(k0). 

(A 8 4  

(A 8 4  and 

It is now readily shown that a+ - are proportional to exp (st )  where the growth rate 
is given by 

(A 9) 

Here G is an O(s2) detuning parameter, and in general (A 9) defines an instability band 

E ~ G - ~ u , ~ ~  < G < s2G+lao12, (A 10a) 

0, = f ( r+y - ) f - f (P+  +B- +2v). (A lob) 

A necessary condition for instability is that y+ y- > 0. In  general, whenever (A 9) 
predicts instability, the instability is centred on the N = 2 resonance curve with a 
bandwidth G that is O(s2) (or O(s) in the modulation wavenumber space, as G is a 
second-order function ofp),  and a growth rate that is also O(s2). Near the origin of 
the P-plane it may be shown from (A 8 b, c) that /3* x - 2v, y* x - v, where v is given 
by (A 7 b), and also 

= s4y+ y - l ~ , 1 ~ - ~ { 2 G + ~ ~ ( p +  +,8- +2v)l~,,l~}~. 

It then follows that (A 9) reduces to 

which is the well-known expression for long-wavelength modulational instabiky of 
small-amplitude waves (see, for instance, Davey & Stewartson 1974 or Yuen & Lake 
1982). Instability occurs for Gv > 0. In  $3 we consider the one-dimensional case 
(q = 0) for the specific physical system of this paper, and calculate the coefficient v. 

We conclude this Appendix by noting the curious fact that if a triad resonance is 
close in the p-plane to a quartet resonance then it may have a stabilizing effect. 
Indeed, let g* = a(k,)+a@)-a(k,+p) be the detuning parameters for the triad 
resonance (see A 3c), and let us further suppose that one of g* is small. Then it may 
be shown from (A 6 b ) ,  where g* occur in the denominator of the second term, that 
p* are proportional to (g*)-l and y* are proportional to (gr)-l. It is then apparent 
from (A 9) that if either of g* is small, there is stability. Some evidence for this 
behaviour is found in our numerical results of $5. Of course if the triad resonance 
is approached too closely then it will lead to its own instability given by (A 4). 

( R ~ s ) ~  = G(2~s~1a,1~-G), (A 12) 
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